膨大なデータでトレーニングしたGPT-3やBERTなどの大規模言語モデルは、基本的には「文章の並び方に確率を割り当て、次に来るのが自然な語を予測する」というモデルです。ところが、大規模言語モデルはまるで人間のように自然な文章を生成できるほか、画像の生成やタンパク質の立体構造の予測など、さまざまなタスクにも応用することが知られています。新たにカリフォルニア大学ロサンゼルス校の研究チームが、GPT-3は特定の情報を別のものに適用して答えを推測する「類推」のタスクにおいて、大学生を上回るスコアを記録したという研究結果を発表しました。
Source: GIGAZINE(ギガジン) 最新情報